Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents.

نویسندگان

  • S Doumett
  • L Lamperi
  • L Checchini
  • E Azzarello
  • S Mugnai
  • S Mancuso
  • G Petruzzelli
  • M Del Bubba
چکیده

The distribution of Cd, Cu, Pb and Zn between a contaminated soil and the tree species Paulownia tomentosa was investigated in a pilot-scale assisted phytoremediation study. The influence of the addition of EDTA, tartrate and glutamate at 1, 5 and 10mM concentrations on metal accumulation by the plant and on metal mobilization in soil was evaluated. Root/shoot metal concentration ratios were in the range of 3-5 for Zn, 7-17 for Cu, 9-18 for Cd and 11-39 for Pb, depending on the type and concentration of complexing agent. A significant enhancement of metal uptake in response to complexing agent application was mainly obtained in roots for Pb (i.e. 359 mg kg(-1) for EDTA 10mM and 128 mg kg(-1) for the control), Cu (i.e. 594 mg kg(-1) for glutamate 10mM and 146 mg kg(-1) for the control) and, with the exception of glutamate, also for Zn (i.e. 670 mg kg(-1) for tartrate 10mM and 237 mg kg(-1) for the control). Despite its higher metal mobilization capacity, EDTA produced a metal accumulation in plants quite similar to those obtained with tartrate and glutamate. Consequently the concentration gradient between soil pore water and plant tissues does not seem to be the predominant mechanism for metal accumulation in Paulownia tomentosa and a role of the plant should be invoked in the selection of the chemical species taken up. Metal bioavailability in soil at the end of the experiment was higher in the trials treated with EDTA than in those treated with tartrate and glutamate, the latter not being significantly different from the control. These findings indicated the persistence of a leaching risk associated to the use of this chelator, while an increase of the environmental impact is not expected when glutamate and tartrate are applied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions

The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...

متن کامل

Phytoremediation potential of heavy metals by two native pasture plants (Eucalyptus grandis and ailanthus altissima) assisted with AMF and fibrous minerals in contaminated mining regions

The current study assesses the effect of fibrous clay minerals’ amendments and arbuscular mycorrhiza incubation on heavy metal uptake and translocation in Eucalyptus grandis and Ailanthus altissima plants. For doing so, Eucalyptus and ailanthus trees have been grown in a soil sample, contaminated with heavy metal iron ore mining and collected from southern Iran. The area under study is arid, wi...

متن کامل

Effect of EDTA and DTPA on Phytoremediation of Pb-Zn Contaminated Soils by Eucalyptus camaldulensis Dehnh and Effect on Treatment Time

In this research a pot experiment was carried out to investigate the remediation ability of E. camaldulensis Dehnh inLead-Zinc (Pb-Zn) contaminated soil. The study also investigated the effects of ethylenediaminetetraacetic acid(EDTA) and diethylenetrinitrilopentaacetic acid (DTPA) on the phytoremediation efficiency of the plant species, andharvest time as a suitable dose of chelating agents wa...

متن کامل

Fungi and bacteria as helping agents for remediation of a Pb - contaminated soil by Onopordum acanthium

Phytoremediation is a promising method for remediation of heavy metals (HMs) contaminated environments. However, the main failures are the limited bioavailabilty of HMs such as lead (Pb) in the soil and/or suppressed plant growth in contaminated sites. These limitations specifically occur in semi-arid zone environments such as calcareous soils. Arbuscular mycorrhizal fungi (AMF) and plant growt...

متن کامل

Performance of purslane (Portulaca oleracea) in nickel and cadmium contaminated soil as a heavy metals-removing crop

Specific plants can remove heavy metals from the soil and contribute to pollution remediation in cropping systems. Determining the level of highest heavy metals that a super-accumulator crop can withstand without reducing its yield is important for management. The objective of this study was to investigate the heavy metal-removing capacity of purslane by studying different stress criteria and b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemosphere

دوره 72 10  شماره 

صفحات  -

تاریخ انتشار 2008